Three-dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the earthquake-prone southeastern Carpathians based on integrated analysis of seismic, heat flow, and gravity data

Alik Ismail-Zadeh a,b,c,*, Birgit Mueller a, Gerald Schubert c

a Geophysical Institute, University of Karlsruhe, Hertzstr. 16, Karlsruhe 76187, Germany
b International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Warshavskoye shosse 79-2, Moscow 117556, Russia
c Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, UCLA, 3806 Geology Building, 595 Charles Young Drive East, Los Angeles, CA 90095-1567, USA

Received 22 August 2003; received in revised form 30 January 2004; accepted 26 August 2004

Abstract

The principal purpose of the study is to understand the interplay between intermediate-depth large earthquakes in the southeastern Carpathians (Vrancea) and tectonic stress induced by a high-velocity body (lithospheric slab) descending into the mantle beneath the region. To analyze processes of stress generation and localization in and around the descending slab, we develop a three-dimensional (3D) numerical model of contemporary mantle flow and stress beneath the Vrancea region. The input data of the model consist of: (i) temperatures derived from seismic P-wave velocity anomalies and surface heat flow, (ii) crustal and uppermost mantle densities converted from P-wave velocities obtained from seismic refraction studies, (iii) geometry of the Vrancea crust and slab from tomography and refraction seismic data, and (iv) the estimated strain rate in the slab (as a result of earthquakes) to constrain the model viscosity. We find that major crustal uplifts predicted by the model coincide with the East Carpathian orogen and surround the Transylvanian basin and that predicted areas of subsidence are associated with the Moesian and East European platforms. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress. Modeled tectonic stresses predict large horizontal compression at depths of about 70–220 km beneath the Vrancea region, which coincides with the stress regime defined from fault-plane solutions for the intermediate-depth earthquakes. This implies that buoyancy-driven descent of the lithospheric slab beneath the Vrancea region is directly linked to intermediate-depth seismicity.

© 2004 Elsevier B.V. All rights reserved.

Keywords: High-velocity body; Lithospheric slab; Viscous stress; Mantle flow; Numerical modeling; Vrancea seismicity

* Corresponding author. Tel.: +49 721 6084610; fax: +49 721 71173.
E-mail addresses: Alik.Ismail-Zadeh@gpi.uka.de, aismail@mitp.ru (A. Ismail-Zadeh), Birgit.Mueller@gpi.uka.de (B. Mueller), schubert@ucla.edu (G. Schubert).
1. Introduction: seismicity and geodynamics of the SE-Carpathians

Repeated large intermediate-depth earthquakes of the southeastern (SE) Carpathians (Vrancea region) cause destruction in Bucharest (Romania) and shake central and eastern European cities several hundred kilometers away from the hypocenters of the events. The earthquake-prone Vrancea region is situated at the bend of the SE-Carpathians and is bounded to the north and north-east by the Eastern European platform (EEP), to the east by the Scythian platform (SP), to the south-east by the Dobrogea orogen (DO), to the south and south-west by the Moesian platform (MP), and to the north-west by the Transylvanian basin (TB). The epicenters of the mantle earthquakes in the Vrancea region are concentrated within a very small area (Fig. 1). The projection of the foci on a NW–SE vertical plane across the bend of the eastern Carpathians (section AB in Fig. 1) shows a seismogenic volume about 110 km (deep) × 70 km × 30 km, and extending to a depth of about 180 km. Beyond this depth, the seismicity ends suddenly: one seismic event at 220 km depth represents an exception (Oncescu and Bonjer, 1997). According to the historical catalogue of Vrancea events (Radu, 1979, 1991), large intermediate-depth shocks with magnitudes $M_W > 6.5$ occur three to five times per century. In the 20th century, large events at depths d of 70–180 km occurred in 1940 (moment magnitude $M_W = 7.7$, $d = 160$ km), in 1977 ($M_W = 7.5$, $d = 100$ km), in 1986 ($M_W = 7.2$, $d = 140$ km), and in 1990 ($M_W = 6.9$, $d = 80$ km) (e.g., Oncescu and Bonjer, 1997).

The 1940 earthquake gave rise to the development of a number of geodynamic models for this region. Gutenberg and Richter (1954) drew attention to the Vrancea region as a place of remarkable intermediate-depth seismicity. Later McKenzie (1972) suggested that this seismicity is associated with a relic slab sinking in the mantle and now overlain by continental crust. The 1977 disastrous earthquake and later the 1986 and 1990 earthquakes again raised questions about the nature of the earthquakes. A seismic gap at depths of 40–70 km beneath Vrancea led to the assumption that the lithospheric slab had already detached from the continental crust (Fuchs et al., 1979). Oncescu (1984) proposed...
that the intermediate-depth events are generated in a zone that separates the sinking slab from the neighboring immobile part of the lithosphere rather than in the sinking slab itself. Linzer (1996) explained the nearly vertical position of the Vrancea slab as the final rollback stage of a small fragment of oceanic lithosphere, and Girbacea and Frisch (1998) assumed that the break-off, affecting only the crustal portion of the slab, was followed by horizontal delamination of its lower portion. Most recently, Sperner et al. (2001) suggested a model of Miocene subduction of oceanic lithosphere beneath the Carpathian arc and subsequent soft continental collision, which transported cold and dense lithospheric material into the mantle. While Linzer (1996), Girbacea and Frisch (1998), and Sperner et al. (2001) consider the slab to be oceanic, its origin is still under debate: whether the descending lithosphere is oceanic or continental. Pana and Erdmer (1996) and Pana and Morris (1999) argue that there is no geological evidence of Mesozoic oceanic crust in the eastern Carpathians and the descending lithosphere is likely to be thinned continental or transitional.

Continental convergence in the SE-Carpathians ceased about 10 Ma (Jiricek, 1979; Csontos et al., 1992). Initially, flat subduction zone began to steepen to its present nearly vertical orientation (Sperner, CRC 461 Team, 2004). At present the cold slab (hence, denser than the surrounding mantle) beneath the Vrancea region sinks due to gravity. The hydrostatic buoyancy forces promote the sinking of the slab, but viscous and frictional forces resist the descent. The combination of these forces produces shear stresses at intermediate depths that are high enough to cause earthquakes. This was shown in two-dimensional (2D) numerical models of mantle flow and tectonic stress by Ismail-Zadeh et al. (2000). These authors recognized that the depth distribution of the annual average seismic energy released in earthquakes has a shape similar to that of the depth distribution of the modeled stress magnitude in the slab.

Hettel et al. (2000) presented a simplified finite-element model of the descending viscoelastic slab and showed the onset of a necking process in the slab and decoupling between the slab and the overlying lithosphere. To evaluate the role of slab detachment in stress evolution, Ismail-Zadeh et al. (2004) developed two-dimensional thermo-mechanical finite-element models of the post-Miocene subduction of the Vrancea slab subject to gravity forces alone. The models predicted lateral compression in the slab that were in agreement with those inferred from the stress axes of earthquakes. It was found that the maximum stress occurs in the depth range of 80–200 km and the minimum stress falls into the depth range of 40–80 km, which corresponds to the seismic gap. It was also shown that high tectonic stress (leading to seismic activity) is preserved in the slab for a few million years, even after the detachment. The two-dimensional numerical studies revealed principal features of mantle flow and tectonic stresses induced by a simple model of the descending slab, but they could not show a correlation between the descending high-velocity body, tectonic stress, and the locations of the Vrancea intermediate-depth earthquakes in any detail.

The principal purposes of this research are to understand (i) how the uppermost mantle structure beneath the SE-Carpathians relates to the intermediate-depth seismicity in the Vrancea region and (ii) how these seismic events correlate with the tectonic stresses induced by the descending high-velocity body (lithospheric slab) observed in the seismic tomography experiment. Hence, we develop a three-dimensional (3D) numerical finite-element model of the instantaneous viscous flow and tectonic stress in the region where input model parameters (geometry, temperature, density, viscosity) are based on the results of regional seismic tomography, seismic refraction studies, and the subsequent modeling of density, gravity, and temperature. The model does not require knowledge of the origin of the Vrancea slab and uses only the data obtained from experiments and natural observations.

We summarize the results of the recent seismic tomographic study conducted in the SE-Carpathians in Section 2.1, the results of two international projects on seismic refraction studies in the region in Section 2.2, the results of the density modeling in the SE-Carpathians and of the regional gravity modeling in Section 3. We discuss possibilities for deriving temperature of the mantle (Section 4.1) and crust (Section 4.2) from the seismic and heat flow data and present results of the temperature modeling beneath the SE-Carpathians. The model of mantle and crustal flow and of tectonic stress in the region is described in Section 5.1, the predicted flow in Section 5.2, and tectonic stress in Section 5.3. Then, we discuss the model results, the
limitations and uncertainties of the study, and conclude the research.

2. Seismic studies of the SE-Carpathians

2.1. Seismic tomography

In 1999, the international tomographic experiment CALIXTO with 143 seismic stations was conducted in southeastern Romania (Martin et al., 2001). During the field experiment 160 local events with magnitude \(M_l \geq 2.0 \) and 450 teleseismic events with magnitude \(M_b \geq 5.0 \) were recorded. The distance between stations ranged from 15–20 km (the Vrancea region) to 25–30 km (outer margins of the network), covering a region of about 350 km in diameter. First results were achieved through an inversion of the teleseismic data with the ACH method (Aki et al., 1977; Evans and Achauer, 1993). Crustal complexity causes a smearing of these results for the upper 60 km. This can be overcome if travel times are calculated through a realistic regional crustal model (Martin, 2003). Variations in crustal thickness, and young deep basins, like the Focșani foredeep basin with its 9 km of Neogene to Quaternary sediments, have to be considered. In such a more sophisticated analysis, the boundaries of the anomalies might shift by at most 20 km. Nevertheless, the results for the deeper parts are reliable enough for the present study to fix the general shape of the velocity anomalies.

Data inversion reveals a high-velocity body with maximum P-wave velocity perturbations of +3.5% in comparison with the background model (see Fig. 2). This high-velocity body is interpreted as the descending lithospheric slab. It reaches a depth of at least 350 km (this is a maximum depth of high resolution tomography), which is in good agreement with results of previous seismic tomography studies (e.g., Wortel and Spakman, 2000). The tomography images reveal features not visible in previous studies by Oncescu (1984), Wenzel et al. (1999), and Bijwaard and Spakman (2000), and allow determination of the geometry of the descending slab and its spatial relation to the earthquake hypocenters (the latter are confined to the southeastern margin of the slab). The slab extends to the south-west beneath the Moesian platform, however this portion of the slab is completely aseismic (Fig. 2).

Fig. 2. Seismic tomographic image of the Vrancea slab (Martin et al., 2001) and hypocenters of earthquakes (circles and asterisks indicate the location and magnitude of seismic events). Three shaded grey surfaces represent the surfaces of 1, 1.5, and 2% positive anomalies of P-wave velocity obtained via teleseismic data inversion. The top surface illustrates the topography. Focal spheres are fault plane solutions for the four largest Vrancea intermediate-depth earthquakes in the 20th century.
Sperner, CRC 461 Team (2004) considers this aseismic portion to be already delaminated from the overlying lithosphere. Because the upper part of the high-velocity body cannot presently be defined from the seismic tomography images, we use the results of the refraction seismic investigations in our analysis.

2.2 Seismic refraction study

Two active-source seismic experiments (in 1999 and 2001) were carried out in the SE-Carpathians to study the crustal and uppermost mantle structure and physical properties beneath the Vrancea region (Hauser et al., 2001, 2002). The 300 km long VRANCEA99 and the 460 km long VRANCEA2001 seismic refraction profiles crossed the Vrancea epicentral area in NNE–SSW and ESE–WNW directions, respectively (Fig. 1). From forward and inverse ray trace modeling, Hauser et al. (2001, 2002) distinguished a multi-layered crust with lateral velocity variations in the sedimentary cover and minor changes in the crystalline crust. They showed that the sedimentary succession comprises two to four seismic layers of variable thickness with velocities ranging from 2.0 to 5.8 km s\(^{-1}\). The upper part of the seismic basement coincides with a velocity of 5.9 km s\(^{-1}\); velocities in the upper crystalline crust are 5.9–6.2 km s\(^{-1}\). An intra-crustal discontinuity apparent at depths between 18 and 31 km divides the crust into an upper and a lower layer.

The Moho discontinuity is predicted at a depth of about 40 km near the intersection of these profiles. Hauser et al. (2002) reported that the Moho shows no crustal roots under the Carpathians. Velocities are 6.7–7.0 km s\(^{-1}\) within the lower crust and about 7.9 km s\(^{-1}\) just below the Moho. Hauser et al. (2001) found a low-velocity zone (7.6 km s\(^{-1}\)) within the uppermost part of the mantle (at depths of 45–55 km) and the velocity beneath this zone is at least 8.5 km s\(^{-1}\). This low-velocity zone is situated within the area of the seismic gap at depths of 40–70 km (Oncescu, 1984).

3. Density and gravity modeling

Based on the seismic velocity models obtained from the refraction experiments and seismic tomography, we derived a 3D density model using the empirical velocity (\(v_P\)) to density (\(\rho\)) relationships developed by Krasovsky (1989):

\[
\rho [\text{kg m}^{-3}] = 10^3 (0.7212 + 0.3209v_P [\text{km s}^{-1}]).
\]

Krasovsky (1989) summarized and processed experimental data on this relationship at high pressures for more than 2000 samples of various crystalline rocks worldwide taking into consideration the rock composition and metamorphic grade.

On the basis of the derived density models, Hackney et al. (2002) developed a 3D gravity model of the SE-Carpathians employing the IGMAS software for gravity modeling (Schmidt and Götze, 1998). It was shown that the gravity effect predicted for the Vrancea slab is about +20 mGal. When the slab gravity effect is removed from the observed Bouguer anomalies (Ioane and Atanasiu, 1998), the signature associated with the Carpathian foredeep (most negative Bouguer anomalies) is more negative. Hackney et al. (2002) suggested that this modified anomaly pattern might better reflect the geometry of the foredeep basin.

4. Temperature modeling

Temperature is a key physical parameter controlling the density, viscosity, and rheology of the Earth’s material and hence crustal and mantle dynamics. Information on temperature inside the Earth’s shallow crust comes from direct measurements of temperature in boreholes. There are however no direct measurements of deep crustal and mantle temperatures, and therefore the temperatures can be estimated indirectly from either seismic wave anomalies, geochemical analysis or through the extrapolation of surface heat flow observations.

4.1 Mantle temperatures from P-wave tomography

Seismic waves allow for 3D imaging of seismic velocities of the Earth’s interior. The seismic velocity anomalies in the upper mantle can be attributed to variations in temperature (Forte et al., 1994, 1995), although several factors other than temperature can also exert an influence on seismic velocity: composition (Griffin et al., 1998), anelasticity (Karato, 1993), anisotropy, and presence of melt or water (Karato, 2004). Uppermost
mantle composition has a complex effect on seismic velocity, while the effect is relatively small compared to the effect of temperature (Jordan, 1979; Sobolev et al., 1996; Goes et al., 2000). During peridotite melting, garnet and clinopyroxene (fastest and slowest of four major minerals which compose the upper mantle) concentrate in the melt (Niu, 1997), and therefore the change in composition of peridotite, as it melts and the melt is extracted, does not appear to significantly affect seismic velocities (Jordan, 1979). Meanwhile the presence of melt may have an effect on seismic velocities.

Seismic wave velocities are affected by melting depending on the melt fraction and geometry. Takei (2000) and Hammond and Humphreys (2000a,b) showed that for a reasonable range of geometries, partial melting has an important effect on seismic wave velocities when the melt fraction exceeds \(\sim 1\% \). The melt fraction for a given material is controlled by the degree of partial melting and the efficiency of melt transport, and the degree of partial melting is determined by temperature and water content. Interpretation of seismic anisotropy is not always unique because of a trade-off between mantle flow geometry and physical mechanisms of anisotropic structure formation (e.g., Smith et al., 2001). Therefore, in the forward modeling of synthetic P-wave seismic velocity anomalies beneath the SE-Carpathians the effects of anharmonicity (composition), anelasticity, and partial melting on seismic velocities were considered.

The seismic tomographic model of the SE-Carpathians we used to derive temperature consists of nine layers of different thickness, which are each subdivided into rectangular blocks (Martin et al., 2001). To restrict numerical errors in the subsequent analysis of flow and tectonic stress we smooth the velocity anomaly data using spline interpolations between the blocks and the layers.

The anharmonic (frequency independent and non-attenuating) part of the synthetic velocities was calculated on the basis of published data on laboratory measurements of density and elastic parameters of the main rock-forming minerals (e.g., Bass, 1995) at various thermodynamic conditions for the composition of the crust and mantle (57.9% Ol, 16.3% CPx, 13.5% Opx, and 12.3% Gt; Green and Falloon, 1998) and the slab (69% Ol, 10% CPx, 19% Opx, and 2% Gt; Agee, 1993). The methodology described by Goes et al. (2000) was used to derive the anharmonic part of the synthetic velocities. To evaluate the effects of anelasticity (attenuation and frequency dependence) and melting, a methodology similar to Sobolev et al. (1996) was employed. Once the synthetic velocities are calculated for a first-guess temperature, an iteration process is used to find the ‘true’ temperature, minimizing the difference between the synthetic and ‘observed’ (in seismic tomography experiments) velocities. During the conversion of seismic velocity to temperature, the reference (background) temperature should be introduced. The laterally averaged temperature in the crust and mantle modeled by Demetrescu and Andreescu (1994) was chosen as the background temperature for this inversion (Fig. 3).

The mantle temperatures at depths of 90, 120, 150, and 200 km are presented in Fig. 4. The pattern of resulting mantle temperature anomalies (predicted temperature minus background temperature) is similar to the pattern of observed P-wave velocity anomalies (Martin et al., 2001), but does not exactly mimic it because of the non-linear inversion of P-wave velocity anomalies to temperature. The modeled low mantle temperatures are associated with the high-velocity
Fig. 4. Temperatures derived from P-wave velocity anomalies beneath the SE-Carpathians at different depths in the mantle. The composition, anharmonicity, anelasticity, and partial melting are taken into account. Isolines present the surface topography. Star shows the location of the Vrancea intermediate-depth earthquakes.

body beneath the Vrancea region and the lithosphere of the East European platform. High temperatures are predicted beneath the Transylvanian depression, the regions of Neogene magmatism in the eastern Carpathians, and the Dobrogea orogen.

4.2. Crustal and uppermost mantle temperatures from heat flow

Smearing of the results of seismic tomography for the upper 60 km does not allow correct prediction of the temperature in the crust and uppermost mantle. The temperature in the shallow levels of the Romanian region was modeled from measured surface heat flux corrected for paleoclimatic changes in the last 70,000 years (+8 mW m\(^{-2}\)) and for the effects of sedimentation on temperatures in the crust in the Focsani and Transylvanian depressions (Demetrescu et al., 2001). A 1D temperature distribution with depth was calculated starting from the measured surface heat flux, assuming steady-state conduction of heat through the lithosphere and adopting a certain model of thermal parameters (thermal conductivity and heat production) characterizing the various subdivisions of the crust and upper mantle.

The analytical solution to the steady-state conduction equation of the heat transfer in a multi-layered medium was used (Demetrescu and Andreescu, 1994).

Fig. 5 presents the temperatures at depths of 20 and 50 km. The high temperatures beneath the Neogene volcanic area (25–26 E, 46–47 N) are associated with the high surface heat flux (+80 mW m\(^{-2}\)). Depending on the crustal model adopted for the volcanic activity (in the presence or absence of magma chambers with high temperature in the crust), temperatures might differ in the depth range of 20–50 km. The temperatures presented in Fig. 5 come from a model without magma

Fig. 5. Temperature in the crust (left; after Demetrescu and Andreescu, 1994) and subcrustal mantle (right; Demetrescu and Andreescu, unpublished data) estimated from the surface heat flux in the region. Isolines present the surface topography. Star shows the location of the Vrancea intermediate-depth earthquakes.

Fig. 6. Predicted contemporary flow induced by the descending slab beneath the SE-Carpathians. Cones illustrate the direction and magnitude of the flow. The violet surface in the middle of the model domain is the surface of 2% positive P-wave velocity anomaly (modeled slab). The top surface is the topography. Arrows on the top of the surface topography are GPS data on the vertical movements in the Vrancea region (Dinter et al., 2001). Circles (MW < 6.5) and asterisks (MW > 6.5) mark the hypocenters of the Vrancea earthquakes.
chambers in the crust (C. Demetrescu, personal communication).

5. Mantle flow and stress

5.1. Model description

To study the effects of the slab on tectonic stress in the region, we develop a 3D numerical model of the descending Vrancea slab based on realistic (in the sense of the seismic tomographic image) slab geometry. We consider the model interface between the Vrancea slab and the surrounding mantle to coincide with the surface of 2% positive anomaly of P-wave seismic velocity obtained in the regional seismic tomography study (see Fig. 2). The interface between the crust and mantle in the model is a 3D extrapolation of the Moho discontinuity found in the seismic refraction studies (Hauser et al., 2001, 2002). The model structure comprises the crust, slab, and uppermost mantle (down to 350 km depth). With respect to our 2D numerical analysis of tectonic stress (Ismail-Zadeh et al., 2000, 2004), which assumed a simplified geometry and physical parameters, we now add some complexities such as the realistic geometry, temperature distribution based on seismic and heat flow data, temperature-dependent density, and temperature- and pressure-dependent viscosity. These complexities permit a more detailed comparison between model predictions and observations.

In the model domain, \(\Omega \): \(\{0 \leq x_1 \leq l_1, 0 \leq x_2 \leq l_2, 0 \leq x_3 \leq l_3\} \) (where \(x = (x_1, x_2, x_3) \) are the Cartesian coordinates), we consider an inhomogeneous viscous mantle flow in the presence of gravity. The flow is described by the momentum (Stokes) equation

\[-\nabla P + \nabla (\mu(T, P) \nabla u) + \rho(T) \mathbf{g} = 0, \]

the incompressibility condition

\[\nabla \cdot \mathbf{u} = 0,\]

the equation of state for density

\[\rho(T) = \rho_s(x)[1 - \alpha(T - T_m)],\]

and the temperature- and pressure-dependent viscosity

\[\mu(T, P) = \mu_s(x) \exp \left(\frac{E + PV}{RT} - \frac{E_s}{RT_s} \right).\]

where \(P \) is the pressure, \(\mu \) the viscosity, \(\rho \) the density, \(T \) the temperature, \(\mathbf{u} = (u_1, u_2, u_3) \) the flow velocity, \(\varepsilon_{ij} = 0.5(\partial u_i/\partial x_j + \partial u_j/\partial x_i) \) the strain-rate tensor, \(g \) the acceleration due to gravity, \(\alpha \) the coefficient of thermal expansion, \(P_0 \) pressure at the surface, \(E \) the activation energy, \(V \) the activation volume, \(R \) the universal gas constant, and \(\rho_s(x), \mu_s(x), T_m(x) \) are the background density, viscosity, and temperature, respectively. While the dynamics of the descending slab is described mathematically also by the heat balance equation, we do not employ the latter equation in this modeling, because we compute the instantaneous flow and tectonic stress.

We consider laterally averaged densities in the crust and subcrustal mantle derived from the P-wave velocities (see Table 1 and Fig. 3) as the background density \(\rho_s(x) \) for the 50-km upper layer of the model. The background density for the modeled mantle is based on the PREM model (Dziewonski and Anderson, 1981). The background temperature is derived from results of geothermal modeling of Vrancea lithosphere (Demetrescu and Andreescu, 1994) (Fig. 3).

Viscosity is an important physical parameter in stress modeling because it influences the stress state and results in strengthening or weakening of Earth’s material. Though it is the least-known physical parameter of the model, the viscosity of the Vrancea slab can be constrained by observations of the regional strain rates.

Table 1

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>(v_p) (km s(^{-1}))</th>
<th>(\rho) (10(^3) kg m(^{-3}))</th>
<th>(T_m) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.7</td>
<td>1.59</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>3.5</td>
<td>1.84</td>
<td>80</td>
</tr>
<tr>
<td>5.0</td>
<td>4.5</td>
<td>2.17</td>
<td>130</td>
</tr>
<tr>
<td>7.5</td>
<td>5.2</td>
<td>2.39</td>
<td>180</td>
</tr>
<tr>
<td>10.0</td>
<td>5.7</td>
<td>2.55</td>
<td>230</td>
</tr>
<tr>
<td>12.5</td>
<td>5.8</td>
<td>2.58</td>
<td>290</td>
</tr>
<tr>
<td>15.0</td>
<td>5.9</td>
<td>2.61</td>
<td>350</td>
</tr>
<tr>
<td>20.0</td>
<td>6.2</td>
<td>2.71</td>
<td>420</td>
</tr>
<tr>
<td>25.0</td>
<td>6.7</td>
<td>2.87</td>
<td>510</td>
</tr>
<tr>
<td>30.0</td>
<td>6.9</td>
<td>2.94</td>
<td>600</td>
</tr>
<tr>
<td>35.0</td>
<td>7.0</td>
<td>2.97</td>
<td>670</td>
</tr>
<tr>
<td>40.0</td>
<td>8.0</td>
<td>3.28</td>
<td>740</td>
</tr>
<tr>
<td>50.0</td>
<td>8.1</td>
<td>3.32</td>
<td>820</td>
</tr>
</tbody>
</table>

* Hauser et al. (2001, 2002).
* Demetrescu and Andreescu (1994).
Intermediate-depth earthquakes in the Vrancea region provide an indirect measure of the rate of strain release within the seismogenic body (8 \times 10^8 N \text{m year}^{-1}, Wenzel et al., 1999; Ismail-Zadeh et al., 2000). Therefore, the strain rate (ratio between stress and viscosity), as a result of the Vrancea earthquakes, is estimated to be 7.5 \times 10^{-13} s^{-1} (Wenzel et al., 1999; the estimation is based on Kostrov’s (1974) formula). This strain rate was used as a constraint on the viscosity of the model slab in our test computations of the flow and strain rate for various viscosity ratios between slab and mantle. Based on these tests, we adopted the background viscosity \(\eta(\chi)\) to be 10^{22} Pa s for the Vrancea slab, 10^{23} Pa s for the crust, and 10^{20} Pa s for the mantle. The model parameters are summarized in Table 2.

We consider free-slip conditions at the upper and lower boundaries of the model domain and symmetry conditions at the side (vertical) boundaries. To avoid an effect of the lateral boundary conditions on the numerical results, we extended the modeled domain in horizontal directions by a factor of two. The effect of the surface loading due to the Carpathian Mountains is not considered, because this loading would have insignificant influence on the stress in the slab (as was shown in two-dimensional models of the Vrancea slab evolution; Ismail-Zadeh et al., 2004). According to geodynamic models of the region (e.g., Sperner et al., 2001), the Vrancea slab is at its late evolutionary stage and sinks into the mantle solely under the influence of gravity. Hence, neither horizontal nor vertical velocities are superimposed on the model domain, and flow and induced tectonic stresses are considered to be due to buoyancy forces alone.

The numerical solution to the problem is based on the introduction of a two-component vector velocity potential (replacing the three components of vector velocity in Eqs. (1) and (2)) and on the application of the Eulerian finite-element method with a tricubic-spline basis for computing the vector potential (Ismail-Zadeh et al., 2001). The tensor of tectonic stress \(\sigma_{ij}\) is then computed using the relationship \(\sigma_{ij} = \mu(T, P)\rho_0\).

The numerical models, with a spatial resolution of 10 km \times 10 km \times 5 km, were run on an IBM SP2 parallel computer. The accuracy of the solutions has been verified by several tests, including numerical grid changes and total mass changes (Ismail-Zadeh et al., 2001) and comparison with the simple analytical solution to the 3D Stokes equation combined with the advection of density equation (Trushkov, 2002).

5.2. Predicted crustal and mantle flow

Fig. 6 presents the 3D pattern of flow predicted by the model. The main feature is that the gravitational sinking of the slab beneath the Vrancea region induces downwelling (blue cones) and associated upwelling (orange cones) in the mantle. In fact, the 3D flow is rather complicated at the depths of the intermediate-depth seismicity: toroidal (in horizontal planes) flow at depths between about 100 and 200 km coexists with poloidal (in vertical planes) flow. The horizontal flow at the bottom of the model is related to the prescribed boundary conditions and is an artifact. This shortcoming is associated with the fact that the slab can be seen in seismic tomographic images to depths of 350 km, and we have no information on either the presence or absence of the high-velocity anomaly deeper in the mantle. Hence, to avoid the ambiguity with the length of the slab in the modeling and keeping in mind that our aim is to evaluate flow and stress in the region at depths between 70 and 220 km where large earthquakes occur, we adopted the depth of the model domain to be 350 km.

The modeled vertical movements in the crust are shown in Fig. 7 (horizontal slice at depth of 15 km). The areas of major uplift in the model coincide with the East Carpathian and Dobrogea orogens and surround the Transylvanian basin. These model findings are corroborated by the results from fission track
Fig. 7. Map of predicted uplift and subsidence in the SE-Carpathians at 15 km depth. White and black dots illustrate the relative vertical movements at the surface as derived from GPS measurements (Dinter et al., 2001). Isolines present the surface topography. DO, Dobrogea orogen; EEP, Eastern European platform; FB, Foscani basin; MP, Moesian platform; and TB, Transylvanian basin.

analysis in the eastern Carpathian region and Transylvanian basin that demonstrate uplift of several hundred meters since at least Pliocene times (Sanders et al., 1999, 2002). The Focsani basin is situated between the predicted areas of uplift and subsidence. The modeled crustal movements beneath the basin are directed downward and consistent with the analysis of recent vertical movements in the Foscani basin (Tarapoanca et al., 2003). The areas of modeled subsidence correlate with the Moesian and East European platforms. This result is confirmed by the observed tectonic subsidence of the external Carpathian-Moesian platform based on the backstripping analysis (Matenco et al., 2003). The numerical results on vertical crustal movements in the SE-Carpathians agree with the results of geomorphological, geodetic, and geological analysis of recent crustal movements in the region (Radulescu et al., 1996; Zugravescu et al., 1998).

We want to emphasize that the pattern of vertical crustal movements should be considered in a qualitative way (while the results are quantitative) for the

Fig. 8. Comparison of the location of positive P-wave velocity anomalies, earthquake hypocenters, and predicted maximum shear stress. Upper panel: NW–SE seismic tomography cross-section through the SE-Carpathian region (after Martin et al., 2001) and the projection onto this cross-section of the hypocenters of the Vrancea earthquakes from the last decade. Lower panel: predicted maximum shear stress for the same cross-section. The dashed boxes delineate the area of hypocenters and maximum shear stress.
Fig. 9. Maximum shear stress beneath the SE-Carpathians at different mantle depths. Isolines present the surface topography. Star marks the location of the Vrancea intermediate-depth earthquakes.

Fig. 10. Maximum horizontal stress (compression is positive and tension is negative) beneath the SE-Carpathians at different mantle depths. Isolines present the surface topography. Star marks the location of the Vrancea intermediate-depth earthquakes.
following reasons. First, knowledge of the physical properties (density, effective viscosity, temperature) of the crust in the SE-Carpathians is still poor, despite the existence of the seismic crustal models based on the two refraction profiles and results of regional geological and geothermal studies. Second, we do not know much about the rheology of the lower crust, which may influence the vertical movements of the upper crust (Andreescu and Demetrescu, 2001; Lenkey et al., 2002). Third, the reported GPS rates of vertical movements in the region (Dinter et al., 2001) were overestimated (G. Dinter, 2003, personal communication). Ongoing GPS campaigns will probably provide better constraints on the vertical movements in the SE-Carpathian region in the near future. Fourth, the comparison of short-term GPS rates of surface movements with the predicted long-term movements due to mantle dynamics should be done very carefully in seismically active regions. The crustal deformation in such regions is comprised of both post-seismic and tectonic deformation, which should be taken into consideration in a quantitative comparison.

5.3. Predicted tectonic stress

To examine whether the predicted areas of stress localization are consistent with the areas of intermediate-depth seismicity in the region, we compare the predicted zones of maximum shear stress localization with the hypocenters of intermediate-depth earthquakes. The maximum shear stress (see Appendix A for the stress calculation) on the NW–SE cross-section through the Vrancea region is presented in Fig. 8. The stress is localized in a narrow zone that coincides with the projection of earthquake hypocenters onto the same cross-section. The calculated maximum shear stress is also shown in horizontal planes at depths of 90, 120, 150, and 200 km in Fig. 9. The predicted maximum shear stress is associated with the descending Vrancea slab (cold lithospheric body), localized at depths of about 80–180 km, diminishes to the depth of 220 km, and encompasses the area of major Vrancea intermediate-depth events.

The stress concentration in the Vrancea slab during a period between two large earthquakes could have some important implications for the location of a future rupture. Chinnery (1963) showed that shear stresses rise in an area much wider than just in the area of fault tips. The importance of the Chinnery’s discovery was realized later, when lobes of off-fault aftershocks were seen to be associated with calculated increases in shear or Coulomb failure stress (Stein, 1999, and references therein).

Also we estimate the maximum horizontal stress (see Appendix A for the stress calculation) in the modeled region (Fig. 10). The horizontal compression is localized in the areas of large earthquakes. Using numerous fault-plane solutions for intermediate-depth events, Oncescu and Trifu (1987) showed that the axes of compressional stress are almost horizontal (see Fig. 2). The model results indicate also high stresses in the aseismic southwestern portion of the slab beneath the Moesian platform. The complex geometry of the zone of maximum compressional stress reflects the pattern of flow induced by the Vrancea slab sinking in the mantle under the influence of gravity.

6. Discussion

We have modeled tectonic stresses induced by the descending high-velocity body (interpreted as a relic lithospheric slab) beneath the SE-Carpathians (Vrancea earthquake-prone region) and shown that the seismic events at intermediate depths are associated with the zones of maximum shear stress localization. Horizontal compression at these depths agrees well with the stress determination based on the focal mechanisms of the intermediate-depth earthquakes. Small-scale discrepancies between the model predictions and regional observations can be attributed to the model limitations and uncertainties discussed below.

An interpretation of absolute values of lateral heterogeneities in seismic wave velocities has uncertainties regarding thermal anomaly or differences in chemical composition. Moreover, a refined model of P-wave seismic tomography that considers crustal structure can improve the current model at uppermost mantle depths. Another source of uncertainty comes from the choice of mantle and slab compositions in the modeling of mantle temperature from the P-wave seismic velocities. Unfortunately, there are no data on the composition of the mantle beneath the SE-Carpathians, except a few petrological studies of igneous rocks from the Neogene eastern Carpathian volcanic zone (Nitos et al., 2002, and references therein).
As direct temperature measurements are limited to depths of a few kilometers from the surface, the information on the average temperature versus depth comes from geothermal conductivity modeling (Demetrescu and Andreescu, 1994). Additional information from geothermobarometry of xenoliths may better constrain the background temperature profiles (Sobolev et al., 1996).

Viscosity in the mantle beneath the Vrancea region might be influenced by the presence of water at 50–100 km depth. In the modeling, we used a temperature- and pressure-dependent viscosity for the mantle and did not take into account the dependence of viscosity on water. Mei et al. (2002) showed that, due to the combined effects of water and melt weakening, the mantle viscosity in subduction zones can vary by three orders of magnitude over the depth range 60–120 km. The stress-dependent viscous rheology (power-law creep) and low-temperature plasticity (the Peierls mechanism; Kameyama et al., 1999) may also influence the magnitude of the tectonic stress in the Vrancea lithospheric slab.

Despite the model limitations, we have demonstrated the causal relationship between tectonic stress and seismic activity in the region as a consequence of viscous flow induced by the Vrancea slab descending into the mantle under the influence of gravity. Moreover, we have shown that our model, with relatively few adjustable parameters, can provide a sound interpretation of the observed seismic data.

In addition to viscous stress induced by the descending Vrancea slab, other processes might contribute to the stress generation. An increase of shear stress due to the descending slab is one of the possibilities analyzed here. Another process could be a plastic instability at high temperature, when runaway shear slip (failure) occurs at even relatively low shear stresses (Griggs and Baker, 1969). Faulting due to metamorphic phase transitions (Green and Bursley, 1989) or dehydration-induced embrittlement (Raleigh and Paterson, 1965; Hacker et al., 2003) may also play a role in the regional stress generation and release. However, estimations of the cumulative annual seismic moment observed and associated with the volume change due to the basalt-eclogite phase changes in the Vrancea slab show that a pure phase-transition model cannot solely explain the intermediate-depth earthquakes in the region (Ismail-Zadeh et al., 2000).

The question that remains is why earthquakes are located only in a part of the maximum shear stress zone (see Fig. 9). Ismail-Zadeh (2003) attempted to answer this question by making use of a simple analytical model for corner flow (Batchelor, 1967). He demonstrated that the pattern of tectonic stress, induced by a descending slab in subduction zones, differs from that in zones of collision. Maximum shear stress migrates from the upper surface of the descending slab to its lower surface due to changes in dynamics of the descending slab (from slab subduction due to applied lateral forces to slab retreat due to gravity forces). Moreover, as shown in the block-and-fault model of the Vrancea region (Ismail-Zadeh et al., 1999; Soloviev and Ismail-Zadeh, 2003), large earthquakes are likely to occur at the lower surface of the descending slab rather than at its upper surface.

Intermediate-depth earthquakes observed in several places in the world (Pamir-Hindu Kush, the Mediterranean region, Caucasus, Zagros, and Assam) are associated with plate collisions. However, due to the lack of tomography studies, the distribution of earthquake hypocenters with respect to the descending slab beneath these regions is not as well constrained as in the Vrancea region. High-resolution seismic tomography in the regions of intermediate-depth seismicity is crucial (i) to answer the question about hypocenter locations with respect to the descending slab and (ii) to clarify the role of buoyancy forces in contemporary stress generation, its localization and association with seismic events.

7. Conclusion

Based on data from seismic tomography, seismic refraction profiles, heat flow and on the knowledge of geodynamic evolution of the region, we have performed a quantitative analysis of contemporary slow mantle flow and tectonic stress beneath the SE-Carpathians. We have demonstrated a correlation between the location of intermediate-depth earthquakes and the predicted localizations of maximum shear stress and horizontal compression. Therefore, the buoyancy forces, which result from realistic temperature and density distributions in the crust and mantle, can govern the present deformation beneath the SE-Carpathians and explain the regional stress pattern and
intermediate-depth seismicity. Refined seismic tomography results and geothermal modeling will improve the present tectonic stress model.

Acknowledgements

We are very grateful to M. Martin for providing the data on seismic tomography, M. Andreescu and C. Demetrescu for the regional crustal temperature models and fruitful discussions on the geothermal evolution of the region, to K. Bonjer, J. Dirkzwager, K. Fuchs, R. Hackney, F. Hauser, S. Karato, J. Ritter, B. Sperner, I. Tsepelev, and F. Wenzel for useful discussions on the regional seismicity and geodynamics, gravity, temperature, and numerical modeling and critical comments on initial versions of the manuscript. We thank A. Wüstefeld for his assistance in digital data preparation and drawing several figures. Constructive reviews and suggestions by D. Yuen and anonymous reviewer and editorial comments by P. van Keken are acknowledged. This publication was supported by the Alexander von Humboldt Foundation, Program of the Russian Academy of Sciences “Deep Structure of the Earth”, Collaborative Research Centre SFB 461 “Strong Earthquakes”, and National Science Foundation (EAR 0105945).

Appendix A. Calculation of principal stress, maximum shear stress, and maximum horizontal stress from the deviatoric stress tensor

The principal stresses \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \) are the roots of the cubic equation (e.g., Jaeger and Cook, 1984)

\[
I_3 \sigma^3 - I_2 \sigma^2 - I_1 \sigma - I_0 = 0,
\]

where \(I_k \) \((k = 1, 2, 3)\) are three invariants of the deviatoric (tectonic) stress tensor:

\[
I_1 = \tau_{11} + \tau_{22} + \tau_{33},
\]

\[
I_2 = -\left(\tau_{11} \tau_{22} + \tau_{11} \tau_{33} + \tau_{22} \tau_{33}\right) + \tau_{12}^2 + \tau_{13}^2 + \tau_{23}^2,
\]

\[
I_3 = \tau_{11} \tau_{22} \tau_{33} + 2 \tau_{12} \tau_{13} \tau_{23} - \tau_{11} \tau_{23}^2 - \tau_{22} \tau_{13}^2 - \tau_{33} \tau_{12}^2.
\]

Using Cardano’s formula (Karosh, 1972), we find an analytical expression for the principal stresses from the cubic equation:

\[
\sigma_{1,2,3} = \left[-\frac{q}{2} + \left(\frac{q^2}{4} + \frac{p^3}{27}\right)^{1/3} \right]^{1/3} + \left[-\frac{q}{2} - \left(\frac{q^2}{4} + \frac{p^3}{27}\right)^{1/3} \right]^{1/3},
\]

where

\[
p = \frac{1}{3} \tau_3^2 - I_2, \quad q = -\frac{2}{27} I_3^3 - \frac{1}{3} I_2 I_1 - I_0.
\]

The maximum shear stress \(\tau_{\text{max}} \) is calculated from the principal stresses:

\[
\tau_{\text{max}} = 0.5(\sigma_1 - \sigma_3).
\]

The maximum horizontal stress \(S_H \) is calculated from the tensor of tectonic stress \(\tau_{ij} \) as

\[
S_H = \max(\theta_{13}, \theta_{23})
\]

where

\[
\theta_{13} = \tau_{23} \sin \alpha + \tau_{13} \cos \alpha
\]

\[
\theta_{23} = \tau_{23} \cos \alpha - \tau_{13} \sin \alpha
\]

and

\[
\alpha = 0.5 \arctan \frac{2 \tau_{12}}{\tau_{11} - \tau_{22}}.
\]

References

